EL-520W (TINSExxxxEHZZ)_ENGLISH_OpExam
k&~£pnzw^
¢PZWvrab©
xy≠° (→ t, P(, Q(, R()
DATA
95 m10
0.
80 95 k
1.
80 80 k
2.
75 k
3.
75 75 & 3 k
4.
75 50 k
5.
50
–
x= R~
75.71428571
σx= Rp
12.37179148
n= Rn
7.
Σx= Rz
530.
Σx
2
= Rw
41’200.
sx= R£
13.3630621
sx
2
= L=
178.5714286
(95–
–
x)
×10+50=
( 95 -K~)
sx
/K£* 10
+ 50 =
64.43210706
x = 60 → P(t) ? °1 60 °0)=
0.102012
t = –0.5 → R(t) ? °3 0.5 ±)=
0.691463
xy m11
0.
2 5 2 & 5 k
1.
2 5 k
2.
12 24 12 & 24 k
3.
21 40 21 & 40 & 3 k
4.
21 40 15 & 25 k
5.
21 40 Ra
1.050261097
15 25 Rb
1.826044386
Rr
0.995176343
R£
8.541216597
R¢
15.67223812
x=3 → y′=? 3 @y
6.528394256
y=46 → x′=? 46 @x
24.61590706
xy m12
0.
12 41 12 & 41 k
1.
8 13 8 & 13 k
2.
5 2 5 & 2 k
3.
23 200 23 & 200 k
4.
15 71 15 & 71 k
5.
Ra
5.357506761
Rb
–3.120289663
R©
0.503334057
x=10 → y′=? 10 @y
24.4880159
y=22 → x′=? 22 @x
9.63201409
@≠
–3.432772026
@≠
9.63201409
k[]
DATA
30 m10
0.
40 30 k
1.
40 40 & 2 k
2.
50 50 k
3.
↓
DATA
30 ]]]
45 45 & 3 k X2 =
45.
45 ] N2=
3.
45
60 ] 60 k X3=
60.
stdDv L1 = 2.516611478
ª∑46∑00=
vari L1 = 6.333333333
ª∑47∑00=
o_prod(L1,L2) = {–24 –4 19}
ª
∑48∑00
@,∑01)=
i_prod(L1,L2) = –29
ª
∑49∑00
@,∑01)=
abs L2 = 5.099019514
ª∑4A∑01=
list → matA matA: 2 –3
list → matA matA: 7 –1 ª∑6
list → matA matA: 4 –4
Function Dynamic range
Funktion zulässiger Bereich
Fonction Plage dynamique
Función Rango dinámico
Função Gama dinâmica
Funzioni Campi dinamici
Functie Rekencapaciteit
Függvény Megengedett számítási tartomány
Funkce Dynamický rozsah
Funktion Definitionsområde
Funktio Dynaaminen ala
îÛÌ͈Ëfl ÑË̇Ï˘ÂÒÍËÈ ‰Ë‡Ô‡ÁÓÌ
Funktion Dynamikområde
Fungsi Julat dinamik
Fungsi Kisa ran dinamis
DEG: | x | < 10
10
(tan x : | x | ≠ 90 (2n–1))*
sin x , cos x ,
RAD: | x | < —– × 10
10
tan x (tan x : | x | ≠ — (2n–1))*
GRAD: | x | < —– × 10
10
(tan x : | x | ≠ 100 (2n–1))*
sin
–1
x
,
cos
–1
x | x | ≤ 1
tan
–1
x,
3
¿
x | x | < 10
100
In x
,
log x 10
–99
≤ x < 10
100
• y > 0: –10
100
< x log y < 100
• y = 0: 0 < x < 10
100
y
x
• y < 0: x = n
(0 < l x l < 1: — = 2n–1, x ≠ 0)*,
–10
100
< x log | y | < 100
• y > 0: –10
100
< — log y < 100 (x ≠ 0)
• y = 0: 0 < x < 10
100
x
¿y • y < 0: x = 2n –1
(0 < | x | < 1 : — = n, x ≠ 0)*,
–10
100
< — log | y | < 100
e
x
–10
100
< x ≤ 230.2585092
10
x
–10
100
< x < 100
sinh x ,
cosh x ,
| x | ≤ 230.2585092
tanh x
sinh
–1
x | x | < 10
50
cosh
–1
x 1 ≤ x < 10
50
tanh
–1
x | x | < 1
x
2
| x | < 10
50
x
3
| x | < 2.15443469 × 10
33
¿
x 0 ≤ x < 10
100
x
–1
| x | < 10
100
(x ≠ 0)
n! 0 ≤ n ≤ 69*
nPr
0 ≤ r ≤ n ≤ 9999999999*
—— < 10
100
nCr
0 ≤ r ≤ n ≤ 9999999999*
0 ≤ r ≤ 69
—— < 10
100
↔
DEG, D°M ’S
0° 0’ 0.00001” ≤ | x | < 10000 °
x, y → r, θ x
2
+ y
2
< 10
100
0 ≤ r < 10
100
DEG: | θ | < 10
10
r, θ → x, y RAD: | θ | < —– × 10
10
GRAD : | θ | < — × 10
10
DEG→ RAD, GRAD → DEG: | x | < 10
100
DRG |
RAD→ GRAD: | x | <
—
× 10
98
(A+Bi )+(C+Di ) | A + C | < 10
100
, | B + D | < 10
100
(A+Bi )– (C+Di )| A – C | < 10
100
, | B – D | < 10
100
(A+Bi )× (C+Di )
(AC – BD) < 10
100
(AD + BC) < 10
100
@{ 8 Ö 70 + 12 Ö 25
= [r ]
18.5408873
i
@≠ [θ ]
∠
42.76427608
i
r1 = 8, θ1 = 70 °
r2 = 12, θ2 = 25 °
↓
r = ?, θ = ? °
(1 + i) @} 1 +Ü=
1.
i
↓ @{ [r ]
1.414213562
i
r = ?, θ = ? ° @≠ [θ ]
∠
45.
i
@}( 2 - 3 Ü)L
(2 – 3i )
2
= = [x ]
–5.
i
@≠ [y ]
–
12.
i
1 ( 1 +Ü)@•= [x ]
0.5
i
1 + i @≠ [ y]
–
0.5
i
CONJ(5+2i )
∑0( 5 + 2 Ü)= [x ]
5.
i
@≠ [y ]
–
2.
i
m (MAT)
m4
1 2
→ matA
] 2 k 2 k 1 k 2 k
3 4 3 k 4 k
3 1
→ matB
ª∑20
2 6
] 2 k 2 k
3 k 1 k 2 k 6 k
ª∑21
matA × matB =
7 13
ª∑00*∑01=
17 27
matA
–1
=
–2
1
ª∑00@•=
1.5 – 0.5
dim(matA,3,3) = 1 2 0
ª∑30∑00
dim(matA,3,3) = 3 4 0
@, 3 @, 3 )=
dim(matA,3,3) = 0 0 0
fill(5,3,3) = 5 5 5
ª∑31 5 @,
fill(5,3,3) = 5 5 5
3 @, 3 )=
fill(5,3,3) = 5 5 5
cumul matA =
1 2
ª∑32∑00=
4 6
aug(matA,matB) =
1 2 3 1 ª∑33∑00
3 4 2 6 @,∑01)=
identity 3 = 1 0 0
identity 3 = 0 1 0 ª∑34 3 =
identity 3 = 0 0 1
rnd_mat(2,3)
ª∑35 2 @, 3 )=
det matA = –2
ª∑40∑00=
trans matB =
3 2
ª∑41∑01=
1 6
mat → list
L1: {1 3}
ª∑5
L2: {3 2}
m (LIST)
m5
2, 7, 4 → L1 ] 3 k 2 k 7 k 4 k
–3, –1, –4 → L2
ª∑20
] 3 k
± 3 k± 1 k± 4 k
ª∑21
L1+L2 = {– 1 6 0}
ª∑00+∑01=
sortA L1 = {2 4 7}
ª∑30∑00=
sortD L1 = {7 4 2}
ª∑31∑00=
dim(L1,5) = {2 7 4 0 0}
ª∑32∑00
@, 5 )=
fill(5,5) = {5 5 5 5 5}
ª∑33 5 @,
5 )=
cumul L1 = {2 9 13}
ª∑34∑00=
df_list L1 = {5 – 3}
ª∑35∑00=
aug(L1,L2) = {2 7 4 –3 –1 –4} ª∑36∑00
@,∑01)=
min L1 = 2
ª∑40∑00=
max L1 = 7
ª∑41∑00=
mean L1 = 4.333333333
ª∑42∑00=
med L1 = 4
ª∑43∑00=
sum L1 = 13
ª∑44∑00=
prod L1 = 56
ª∑45∑00=
o_° (→ sec, → min)
12° 39’ 18.05” ª 12 o 39 o 18.05
→[10] @_
12.65501389
123.678→ [60] 123.678 @_
123°40’40.8”
3h30m45s + 3 o 30 o 45 + 6 o
6h45m36s = [60] 45 o 36 =
10°16’21.”
1234° 56’ 12” + 1234 o 56 o 12 +
0° 0’ 34.567” = [60] 0 o 0 o 34.567 =
1234°56’47.”
3h45m – 3 o 45 - 1.69 =
1.69h = [60] @_
2°3’36.”
sin62° 12’ 24” = [10] s 62 o 12 o 24 =
0.884635235
24°→ [ ” ] 24 o°2
86’400.
1500”→ [ ’ ]0 o 0 o 1500 °3
25.
{},≠
ª 6 @, 4
x = 6
→
r = @{ [
r
]
7.211102551
y = 4 θ = [ ° ] @≠ [θ ]
33.69006753
@≠[
r
]
7.211102551
14 @, 36
r = 14
→
x = @}[x ]
11.32623792
θ = 36[ ° ] y = @≠[y ]
8.228993532
@≠[x ]
11.32623792
ß
V
0
= 15.3m/s ª 15.3 * 10 + 2 @•*
t = 10s ß 03 * 10 L=
643.3325
V
0
t+ — gt
2
= ?m
¥
125yd = ?m ª 125 @¥ 5 =
114.3
∑ (k, M, G, T, m,
Ì Ì
Ì Ì
Ì, n, p, f)
100m× 10k= 100 ∑14*
10 ∑10=
1’000.
j”
5÷ 9=ANS ª”10”2 1
ANS× 9= 5 / 9 =
0.6
[FIX,TAB=1] * 9 = *
1
5.0
5 / 9 =@j
0.6
* 9 =*
2
5.4
”13
*
1
5.5555555555555×10
–1
×9
*
2
0.6×9
∑ (SOLV)
sin x– 0.5 ªsKˆ- 0.5
Start= 0 ∑0 0 ®®
30.
Start= 180 ® 180 ®®
150.
≤
m0
f( x) = x
3
–3x
2
+2 Kˆ™ 3 - 3 K
ˆL+ 2 @≤
x = –11 ±®
–2.
x = –0.5 @≤ 0.5 ±®
1.125
A
2
+B
2
@⁄(KAL+
KBL)@≤
A = 2, B = 3 2 ® 3 ®
3.605551275
A = 2, B = 5 @≤® 5 ®
5.385164807
1234567890.,
1234567890.,
1234567890.,
1234567890.,
1234567890.,
1234567890.,
CALCULATION EXAMPLES
ANWENDUNGSBEISPIELE
EXEMPLES DE CALCUL
EJEMPLOS DE CÁLCULO
EXEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PÉLDASZÁMÍTÁSOK
PŘÍKLADY VÝPOČTŮ
RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
èêàåÖêõ ÇõóàëãÖçàâ
UDREGNINGSEKSEMPLER
CONTOH-CONTOH PENGHITUNGAN
CONTOH-CONTOH PERHITUNGAN
EL-506W
EL-546W
[]
13(5+2)= ª 3 ( 5 + 2 )=
21.
23× 5+2= 3 * 5 + 2 =
17.
33× 5+3× 2= 3 * 5 + 3 * 2 =
21.
→1 @[
21.
→2 ]
17.
→3 ]
21.
→2 [
17.
”
100000÷ 3=
[NORM1] ª 100000 / 3 =
33’333.33333
→[FIX] ”10
33’333.33333
[TAB 2] ”2 2
33’333.33
→[SCI] ”11
3.33
×
10
04–
→[ENG] ”12
33.33
×
10
03–
→[NORM1] ”13
33’333.33333
3÷ 1000=
[NORM1] ª 3 / 1000 =
0.003
→[NORM2] ”14
3.
×
10
–03
→[NORM1] ”13
0.003
+-*/()±E
45+285÷ 3= ª 45 + 285 / 3 =
140.
18+6
=
( 18 + 6 )/
15– 8 ( 15 - 8 =
3.428571429
42× (– 5)+120= 42 *± 5 + 120 =
–90.
*
1
(5 ± ) *
1
(5× 10
3
)÷ (4× 10
–3
)= 5 E 3 / 4 E
± 3 =
1’250’000.
34+57= 34 + 57 =
91.
45+57= 45 + 57 =
102.
68× 25= 68 * 25 =
1’700.
68× 40= 68 * 40 =
2’720.
sutSUTVhH
Ile¡•L÷⁄™
$#!qQ%
sin60[° ]= ªs 60 =
0.866025403
cos — [rad]=
”01u(
@V/ 4 )=
0.707106781
tan
–1
1=[g] ”02@T 1 =
50.
”00
(cosh 1.5 + ª(hu 1.5 +h
sinh 1.5)
2
= s 1.5 )L=
20.08553692
tanh
–1
— =
@Ht( 5
/ 7 )=
0.895879734
ln 20 = I 20 =
2.995732274
log 50 = l 50 =
1.698970004
e
3
= @e 3 =
20.08553692
10
1.7
= @¡ 1.7 =
50.11872336
— + — =
6 @•+ 7 @
•=
0.309523809
8
–2
– 3
4
× 5
2
=8 ™± 2 - 3 ™
4 * 5 L=
–2’024.984375
(12
3
)
—
=
12 ™ 3 ™ 4
@•=
6.447419591
8
3
8 ÷=
512.
¿
49 –
4
¿
81 = @⁄ 49 - 4 @$
81 =
4.
3
¿
27 @# 27 =
3.
4! = 4 @!=
24.
10
P
3
= 10 @q 3 =
720.
5
C
2
=5 @Q 2 =
10.
500× 25%= 500 * 25 @%
125.
120÷ 400=?% 120 / 400 @%
30.
500+(500× 25%)= 500 + 25 @%
625.
400– (400× 30%)= 400 - 30 @%
280.
θ = sin
–1
x
,
θ = tan
–1
x θ = cos
–1
x
DEG – 90 ≤ θ ≤ 90 0 ≤ θ ≤ 180
RAD – — ≤ θ ≤ — 0 ≤ θ ≤ π
GRAD – 100 ≤ θ ≤ 100 0 ≤ θ ≤ 200
Åè
d/dx (x
4
– 0.5 x
3
+ 6x
2
) ªKˆ™ 4 - 0.5 K
x=2 ˆ÷+ 6 KˆL
dx =0.00002 @Å 2 ®®
50.
x=3 ® 3 ® 0.001 ®
130.5000029
dx =0.001
∫
8
2
(x
2
– 5)d x ªKˆL- 5
n=100 è 2 ® 8 ®®
138.
n=10 ®®® 10 ®
138.
g
90°→ [rad] ª 90 @g
1.570796327
→ [g] @g
100.
→ [° ] @g
90.
sin
–1
0.8 = [°] @S 0.8 =
53.13010235
→ [rad] @g
0.927295218
→ [g] @g
59.03344706
→ [° ] @g
53.13010235
KRO;:?≥∆˚¬
ª 8 * 2 OM
16.
24÷ (8× 2)= 24 /KM=
1.5
(8× 2)× 5= KM* 5 =
80.
ªOM
0.
$150× 3:M1 150 * 3 ;
450.
+)$250:M2 =M 1 +250 250 ;
250.
–)M2 × 5% RM* 5 @%
35.
M @:RM
665.
π
2
π
2
$1=¥ 110 110 OY
110.
¥26,510=$? 26510 /RY=
241.
$2,750=¥ ? 2750 *RY=
302’500.
r=3cm (r→Y) 3 OY
3.
πr
2
=? @VKYL=
28.27433388
—— = 2.4...(A) 24 /( 4 + 6 )=
2.4
3× (A)+60÷ (A)=
3 *K?+ 60 /
K?=
32.2
πr
2
⇒F1 @VKYL
O≥
F1
3 OY
3.
V = ? R≥* 4 / 3 =
37.69911184
6+4=ANS ª 6 + 4 =
10.
ANS+5 + 5 =
15.
8× 2=ANS 8 * 2 =
16.
ANS
2
L=
256.
44+37=ANS 44 + 37 =
81.
√
ANS= @⁄=
9.
\|
3— + — = [a— ] ª 3 \ 1 \ 2 +
4 \ 3 =
4
l
5
l
6
*
→[a.xxx] \
4.833333333
→[d/c] @|
29
l
6
10
—
= @¡ 2 \ 3 =
4.641588834
(
—
)
5
=7 \ 5 ™ 5 =
16807
l
3125
(
—
)
—
=
1 \ 8 ™ 1 \ 3
=
1
l
2
—— = @⁄ 64 \ 225 =
8
l
15
2
3
( 2 ™ 3 ) \
3
4
( 3 ™ 4 ) =
8
l
81
1.2
1.2 \ 2.3 =
12
l
23
2.3
1° 2’ 3”
1 o 2 o 3 \ 2 =
0°31’1.5”
2
1× 10
3
1 E 3 \ 2 E 3 =
1
l
2
2× 10
3
A = 7 ª 7 OA
7.
— =4 \KA=
4
l
7
1.25 + — = [a.xxx] 1.25 + 2 \ 5 =
1.65
→[a— ] \
1
l
13
l
20
*
4
l
5
l
6
= 4—
êûîìíãâ†ä
àá
DEC(25)→ BIN ª@í 25 @ê
11001.
b
HEX(1AC) @ì 1AC
→BIN @ê
110101100.
b
→PEN @û
3203.
P
→OCT @î
654.
0
→DEC @í
428.
BIN(1010– 100) @ê( 1010 - 100 )
×11 = * 11 =
10010.
b
BIN(111)→ NEG ã 111 =
1111111001.
b
HEX(1FF)+ @ì 1FF @î+
OCT(512)= 512 =
1511.
0
HEX(?) @ì
349.
H
2FEC– ªOM@ì 2FEC -
2C9E=(A) 2C9E ;
34E.
H
+)2000– 2000 -
1901=(B) 1901 ;
6FF.
H
(C) RM
A4d.
H
1011 AND ª@ê 1011 †
101 = (BIN) 101 =
1.
b
5A OR C3 = (HEX) @ì 5A ä C3 =
db.
H
NOT 10110 = @êâ 10110 =
1111101001.
b
(BIN)
24 XOR 4 = (OCT) @î 24 à 4 =
20.
0
B3 XNOR @ì B3 á
2D = (HEX) 2D =
FFFFFFFF61.
H
→DEC @í
–159.
Standardization conv ersion formula
Standard Umrechnungsf ormel
Formule de conv ersion de standardisation
Fó rmula de conversió n de estandarizació n
Fó rmula de conversã o padronizada
Formula di conv ersione della standardizzazione
Standaardisering omzettingsformule
Standard átváltási képlet
Vzorec pro přepočet rozdělení
Omvandlingsf ormel fö r standardisering
Normituksen konv ersiokaava
îÓÏÛ· ÒÚ ‡Ì‰‡ÚËÁÓ‚‡ÌÌÓ„ Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl
Omregningsformel for standardisering
Rumus penukaran pemia waian
Rumus kon versi standarisasi
m (2-VLE)
m20
2x + 3 y = 4 2 ® 3 ® 4 ®
5x + 6 y = 7 5 ® 6 ® 7
x = ? ® [x]
–1.
y = ? ® [y]
2.
det(D) = ? ® [det(D)]
–3.
m (3-VLE)
m21
x + y – z = 9 1 ® 1 ® 1 ±® 9 ®
6x + 6 y – z = 17 6 ® 6 ® 1 ±® 17 ®
14x – 7 y + 2z = 42 14 ® 7 ±® 2 ® 42
x = ? ® [x]
3.238095238
y = ? ® [y]
–1.638095238
z = ? ® [ z]
–7.4
det(D) = ? ® [det(D)]
105.
m (QUAD, CUBIC)
m22
3x
2
+ 4x – 95 = 0 3 ® 4 ®± 95
x1 = ? ®
5.
x2 = ? ®
–6.333333333
@®
5.
m23
5x
3
+4x
2
+3x +7=0 5 ® 4 ® 3 ® 7
x1 = ? ®
–1.233600307
i
x2 = ? ®
0.216800153
i
@≠
+
1.043018296
i
x3 = ? ®
0.216800153
i
@≠
–
1.043018296
i
m (CPLX)
m3
(12– 6i ) + (7+15 i ) – 12 - 6 Ü+ 7 + 15 Ü-
(11+4i ) = ( 11 + 4 Ü)= [x ]
8.
i
@≠ [y ]
+
5.
i
@≠ [x ]
8.
i
6× (7– 9i ) × 6 *( 7 - 9 Ü)*
(– 5+8i ) = ( 5 ±+ 8 Ü)= [x ]
222.
i
@≠ [y ]
+
606.
i
16× (sin30° + 16 *(s 30 +
icos30° )÷ (sin60° + Üu 30 )/(s 60 +
icos60° )= Üu 60 )= [x ]
13.85640646
i
@≠ [y ]
+
8.
i
1
2
—— =
••••
••••
••••
1
2
4
3
b
c
2
3
64
225
— =
—– =
——– =
——– =
4
A
2
5
b
c
5
6
a
1
x + b
1
y = c
1
a
2
x + b
2
y = c
2
a
1
b
1
a
2
b
2
D =
a
1
x + b
1
y + c
1
z = d
1
a
2
x + b
2
y + c
2
z = d
2
a
3
x + b
3
y + c
3
z = d
3
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
D =
1
6
1
7
1
4
π
4
5
7
24
4+6
••••
••••
Σx = x
1
+ x
2
+ ··· + x
n
Σx
2
= x
1
2
+ x
2
2
+ ··· + x
n
2
Σxy = x
1
y
1
+ x
2
y
2
+ ··· + x
n
y
n
Σy = y
1
+ y
2
+ ··· + y
n
Σy
2
= y
1
2
+ y
2
2
+ ··· + y
n
2
••••
••••
This equipment complies with the requirements of Directiv e 89/336/
EEC as amended by 93/68/EEC.
Dieses Gerät entspricht den Anforderungen der EG-Richtlinie 89/336/
EWG mit Änderung 93/68/EWG.
Ce matériel répond aux exigences contenues dans la directi ve 89/336/
CEE modifiée par la directi ve 93/68/CEE.
Dit apparaat voldoet aan de eisen v an de richtlijn 89/336/EEG,
gewijzigd door 93/68/EEG.
Dette udstyr overholder kra vene i direkti v nr . 89/336/EEC med tillæg
nr . 93/68/EEC.
Quest’ apparecchio è conforme ai requisiti della direttiv a 89/336/EEC
come emendata dalla diretti va 93/68/EEC.
89/336/,
93/68/.
Este equipamento obedece às exigências da directi va 89/336/CEE na
sua versão corrigida pela directi va 93/68/CEE.
Este aparato satisface las exigencias de la Directi va 89/336/CEE
modificada por medio de la 93/68/CEE.
Denna utrustning uppfyller kraven enligt riktlinjen 89/336/EEC så som
kompletteras av 93/68/EEC.
Dette produktet oppfyller betingelsene i direktiv et 89/336/EEC i
endringen 93/68/EEC.
Tämä laite täyttää direktii vin 89/336/EEC vaatimukset, jota on
muutettu direktiivillä 93/68/EEC.
чÌÌÓ ÛÒÚÓÈÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ú·ӂ‡ÌËflÏ ‰ËÂÍÚË‚˚ 89/336/
EEC Ò Û˜ÂÚÓÏ ÔÓÔ‡‚ÓÍ 93/68/EEC.
Ez a készülék megfelel a 89/336/EGK sz. EK-irányelvben és annak 93/
68/EGK sz. módosításában foglalt követelményeknek.
T ento pfiístroj vyhovuje poÏadavkÛm smûrnice 89/336/EEC v platném
znûní 93/68/EEC.
In Europe:
Nur fü r Deutschland/For Germany only:
Umweltschutz
Das Gerä t wird durch eine Batterie mit Strom versorgt.
Um die Batterie sicher und umweltschonend zu entsorgen,
beachten Sie bitte folgende Punkte:
• Bringen Sie die leere Batterie zu Ihrer örtlichen M ülldeponie,
zum Hä ndler oder zum Kundenservice-Zentrum zur
Wiederverwertung.
• Werfen Sie die leere Batterie niemals ins Feuer, ins Wasser
oder in den Hausmüll.
Seulement pour la France/For France only:
Protection de l’environnement
L’ appareil est aliment é par pile. Afin de prot é ger
l’ environnement, nous vous recommandons:
• d ’apporter la pile usag ée ou à votre revendeur ou au service
aprè s-vente, pour recyclage.
• de ne pas jeter la pile usag ée dans une source de chaleur,
dans l’ eau ou dans un vide-ordures.
AC + BD
< 10
100
C
2
+ D
2
(A+Bi )÷ (C+Di )
BC – AD
< 10
100
C
2
+ D
2
C
2
+ D
2
≠ 0
→DEC DEC : | x | ≤ 9999999999
→BIN BIN : 1000000000 ≤ x ≤ 1111111111
→PEN 0 ≤ x ≤ 111111111
→OCT PEN : 2222222223 ≤ x ≤ 4444444444
→HEX 0 ≤ x ≤ 2222222222
AND OCT : 4000000000 ≤ x ≤ 7777777777
OR 0 ≤ x ≤ 3777777777
XOR HEX : FDABF41C01 ≤ x ≤ FFFFFFFFFF
XNOR 0 ≤ x ≤ 2540BE3FF
BIN : 1000000000 ≤ x ≤ 1111111111
0 ≤ x ≤ 111111111
PEN : 2222222223 ≤ x ≤ 4444444444
NOT
0 ≤ x ≤ 2222222221
OCT : 4000000000 ≤ x ≤ 7777777777
0 ≤ x ≤ 3777777777
HEX : FDABF41C01 ≤ x ≤ FFFFFFFFFF
0 ≤ x ≤ 2540BE3FE
BIN : 1000000001 ≤ x ≤ 1111111111
0 ≤ x ≤ 111111111
PEN : 2222222223 ≤ x ≤ 4444444444
NEG
0 ≤ x ≤ 2222222222
OCT : 4000000001 ≤ x ≤ 7777777777
0 ≤ x ≤ 3777777777
HEX : FDABF41C01 ≤ x ≤ FFFFFFFFFF
0 ≤ x ≤ 2540BE3FF
* n, r: integer / ganze Zahlen / entier / entero / inteiro / intero /
geheel getal / egé sz szá mok / celé číslo / heltal /
kokonaisluku / ˆÂÎ˚ / heltal /
/ /
/
integer / bilangan bulat
•••• ••••
••••
n!
(n-r)!
n!
(n-r)!
π
180
10
9
π
2
π
180
π
2
10
9
1
x
1
x
1
x
1
x
Endast svensk version/For Sweden only:
Miljöskydd
Denna produkt drivs av batteri.
Vid batteribyte skall fö ljande iakttagas:
• Det f örbrukade batteriet skall inl ämnas till er lokala handlare
eller till kommunal miljö station för återinssamling.
• Kasta ej batteriet i vattnet eller i hush ållssoporna. Batteriet
få r ej heller utsä ttas fö r ö ppen eld.
OPMERKING: ALLEEN VOOR NEDERLAND/
NOTE: FOR NETHERLANDS ONLY
• Physical Constants and Metric Conversions are shown in the
tables.
• Physikalischen Konstanten und metriche Umrechnungen sind
in der Tabelle aufgelistet.
• Les constants physiques et les conversion des unit és sont
indiqué es sur les tableaux.
• Las constants fisicas y conversiones m étricas son mostradas
en las tables.
• Constantes Fisicas e Convers ões M étricas est ão mostradas
nas tablelas.
• La constanti fisiche e le conversioni delle unit à di misura
vengono mostrate nella tabella.
• De natuurconstanten en metrische omrekeningen staan in de
tabellen hiernaast.
• A fizikai konstansok és a metrikus átváltások a táblázatokban
találhatók.
• Fyzikální konstanty a převody do metrické soustavy jsou
uvedeny v tabulce.
• Fysikaliska konstanter och metriska omvandlingar visas i
tabellerna.
• Fysikaaliset vakiot ja metrimuunnokset n äkyv ät taulukoista.
• Ç Ú‡·Îˈ‡ı ÔÓ͇Á‡Ì˚ ÙËÁ˘ÂÒÍË ÍÓÌÒÚ‡ÌÚ˚ Ë
ÏÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl.
• Fysiske konstanter og metriske omskrivninger vises i tabellen.
•
•
•
• Pemalar Fizik dan Pertukaran Metrik ditunjukkan di dalam
jadual.
• Konstanta Fisika dan Konversi Metrik diperlihatkan di dalam
tabel.
METRIC CONVERSIONS
x @¥ 1 — 44
No. UNIT No. UNIT No. UNIT
1i n→cm 16 kg →lb 31 J →calIT
2c m→in 17 ° F →°C3 2 c a lIT→J
3f t→m1 8°C→ °F3 3 h p→W
4m→ft 19 gal (US) →l 34 W →hp
5y d→m2 0l→gal (US) 35 ps →W
6m→yd 21 gal (UK) →l 36 W →ps
7 mile→km 22 l → gal (UK) 37 kgf/cm
2
→Pa
8k m→mile 23 fl oz (US) →ml 38 Pa →kgf/cm
2
9 n mile→m2 4 ml→fl oz (US) 39 atm →Pa
10 m→ n mile 25 fl oz (UK) → ml 40 Pa→ atm
11 acre→ m
2
26 ml→ fl oz (UK) 41 mmHg → Pa
12 m
2
→acre 27 J →cal 42 Pa →mmHg
13 oz→ g 28 cal → J 43 kgf · m→ J
14 g→ oz 29 J→ cal15 44 J→ kgf· m
15 lb→ kg 30 cal15 → J
7
5
1
8
1
3
PHYSICAL CONSTANTS ß 01 — 52
No. SYMBOL UNIT No. SYMBOL UNIT No. SYMBOL UNIT
01 - c, c
0
m s
–1
19 -
µ
Β
J T
–1
37 - eV J
02 - G m
3
kg
–1
s
–2
20 -
µ
e
J T
–1
38 - t K
03 - g
n
m s
–2
21 -
µ
Ν
J T
–1
39 - AU m
04 - m
e
kg 22 -
µ
p
J T
–1
40 - pc m
05 - m
p
kg 23 -
µ
n
J T
–1
41 - M(
12
C) kg mol
–1
06 - m
n
kg 24 -
µ
µ
J T
–1
42 - h
-
J s
07 - m
µ
kg 25 -
λ
c
m4 3 - E
h
J
08 - lu kg 26 -
λ
c, p
m4 4 - G
0
s
09 - e C 27 -
σ
W m
–2
K
–4
45 -
α
–1
10 - h J s 28 - N
Α
,
L mol
–1
46 - m
p
/m
e
11 - k J K
–1
29 - V
m
m
3
mol
–1
47 - M
u
kg mol
–1
12 -
µ
0
N A
–2
30 - R J mol
–1
K
–1
48 -
λ
c, n
m
13 -
ε
0
F m
–1
31 - F C mol
–1
49 - c
1
W m
2
14 - r
e
m 32 - R
K
Ohm 50 - c
2
m K
15 -
α
33 -
-
e/m
e
C kg
–1
51 - Z
0
Ω
16 - a
0
m 34 - h/2m
e
m
2
s
–1
52 - Pa
17 - R
∞
m
–1
35 -
γ
p
s
–1
T
–1
18 - Φ
0
Wb 36 - K
J
Hz V
–1