Partlist SHARK
Part No. Quantity Description
1 1 Canopy
2 1 Fuselage and fi n
3 1 Left-hand wing panel
4 1 Right-hand wing panel
5 1 Left-hand tailplane panel
6 1 Right-hand tailplane panel
7 1 Plastic wing retainer screw
8 2 Hook-and-loop tape, hook
9 2 Hook-and-loop tape, loop
10 1 Screwdriver
11 1 Allen key
12 1 Battery, 3S / 950 mAh (only RR+ / RTF)
13 1 RX5 receiver, ID 9 (only RR+ / RTF)
14 1 Smart SX with manual (only RTF)
16 1 AA-size dry cell (only RTF)
17 1 Plug-type battery charger MULTIcharger L-703 EQU (only RTF)
# 26 4286 # 26 4287 # 26428/8/9
Fuselage
Canopy
L.H. wing
panel
Rudder
Fin
Elevator
R.H. wing
panel
Longitudinal axis
lateral axis
normal axis
Aileron
Aileron
Basic information relating to model aircraft
Any aircraft, whether full-size or model, can be controlled around the three primary axes: vertical (yaw), lateral (pitch) and longi-
tudinal (roll).
When you operate the elevator, the model’s attitude alters around the lateral axis. If you apply a rudder command, the model swings
around the vertical axis. If you move the aileron stick, the model rolls around its longitudinal axis. As our SHARK has considerable
wing dihedral, ailerons are not required for roll control. In this case the rudder is used both to turn the model around the vertical axis,
and also to roll it (longitudinal axis). External infl uences such as air turbulence may cause the model to deviate from its intended
fl ight path, and when this happens the pilot must control the model in such a way that it returns to the required direction. The basic
method of controlling the model’s height (altitude) is to vary motor speed (motor and propeller). The rotational speed of the motor
is usually altered by means of a speed controller. Applying up-elevator also causes the model to gain height, but at the same time
it loses speed, and this can only be continued until the model reaches its minimum airspeed and stalls. The maximum climb angle
varies according to the power available from the motor.