555961
2
Zoom out
Zoom in
Previous page
1/2
Next page
Beispiel
Beispiel 1
Math
: 1
3
2
+
6
5
=
2
5
Math D
1
+
3
2
6
5
[ 2nd ] [
A
c
b
] 1 [ ] 2 [ ] 3 [ ]
[ + ] [
e
d
] 5 [ ] 6 [ ] [ = ]
2
5
Beispiel 2
Math
: ( 1+
2
)
2
x 2= 6 + 4
2
Math D
(
1
+
2
)
2
x 2
[ ( ] 1 [ + ] [ ] 2 [ ] [ ) ] [ x
2
]
[ x ] 2 [ = ]
6 + 4 2
Beispiel 3
Math
:14 0 x 2.3 Fehleingabe von 14 10 x 2.3
Math D
M a t h E R R O R
[ A C ] C a n c e l
14 [ ] 0 [ x ] 2.3 [ = ]
[ ] [ ] G o t o
Math D
1 4 ÷ 1 0 x 2 . 3
[ ] [ ] 1 [ = ]
50
161
Beispiel 4
(1)
Math
: Änderung von 123 x 456 auf 12 x 457
Math D
1 2 3 x 4 5 6
123 [ x ] 456 [ = ]
5 6 0 8 8
Math D
1 2 x 4 5 6
[ ] [ ] [ ] [ ] [ DEL ]
Math D
1 2 x 4 5 7
?
[ ] [ ] [ ] [ ] [ DEL ] 7
Math D
1 2 x 4 5 7
[ = ]
5 4 8 4
Beispiel 5
(1)
Math
: Geben Sie für A den Wert 30 ein
Math D
3 0 A
30 [ 2nd ] [ STO ] [ A ]
3 0
(2)
Math
: Multiplizieren Sie die variable A mit der Zahl 5 und geben
Sie das Ergebnis als Wert r B an.
Math D
5 x A
5 [ x ] [ RCL ] [ A ] [ = ]
1 5 0
Math D
A n s B
[ 2nd ] [ STO ] [ B ]
1 5 0
(3)
Math
: Löschen Sie den Wert von B.
Math D
0 B
0 [ 2nd ] [ STO ] [ B ]
0
Math D
B
[ RCL ] [ B ]
0
Beispiel 6
Math
: [ ( 3 x 5 ) + ( 56 7 ) + ( 74 – 8 x 7 ) ] = 41
Math D
0 M
0 [ 2nd ] [ STO ] [ M ]
0
M Math D
7 4 8 x 7 M +
3 [ x ] 5 [ M+ ] 56 [ ] 7 [ M+ ] 74
[ – ] 8 [ x ] 7 [ M+ ]
1 8
M Math D
M
[ RCL ] [ M ]
4 1
Math D
0 M
0 [ 2nd ] [ STO ] [ M ]
0
Beispiel 7
Math
: 7 + 5 x 4 = 27
Math D
7 + 5 x 4
7 [ + ] 5 [ x ] 4 [ = ]
2
7
Beispiel 8
Math
: 2.75 x 10
– 5
=
400000
11
Math D
2
.
7
5
x
1
0
-
5
2.75 [ x10
x
] [ (–) ] 5 [ = ]
400000
11
Line
: 2.75 x 10
– 5
= 2.75 x 10
-5
D
2 . 7 5 x 1 0 - 5
[ 2nd ] [ SET UP ] [ 2 ] (LineIO)
2.75 [ x10
x
] [ (–) ] 5 [ = ]
2. 7 5 x 1 0
-5
D
2 . 7 5 x 1 0 - 5
[ 2nd ] [ SET UP ] [ 8 ] [ 2 ]
(NORM 2)
0. 0 0 0 0 2 7 5
Beispiel 9
Line
: 10000 x 10000 x 100 = 10,000,000,000 = 1 x 10
10
D
1
0
0 0 0 x 1 0 0 0 0 x 1 0 0
10000 [ x ] 10000 [ x ] 100
[ = ]
1 x 1 0
10
Beispiel 10
Math
: 2 x { 7 + 6 x ( 5 + 4 ) } = 122
Math D
2 ( 7 + 6 ( 5 + 4
[ 2nd ] [ SET UP ] [ 1 ] (MthIO)
2 [ ( ] 7 [ + ] 6 [ ( ] 5 [ + ] 4 [ = ]
1 2 2
Beispiel 11
Math
: ( 2 + 3 ) x 10
2
= 500
Math D
( 2 + 3 )
x
x 1 0 2
[ ( ] 2 [ + ] 3 [ ) ] [ x ] [ x10
x
] 2
[ = ]
5
0 0
Beispiel 12
Math
: 120 x 30 % = 36
Math D
1 2 0 x 3 0 %
120 [ x ] 30 [ 2nd ] [ % ] [ = ]
3 6
Beispiel 13
Math
: 88 55 % = 160
Math D
8 8 5 5
%
88 [ ] 55 [ 2nd ] [ % ] [ = ]
1 6 0
Beispiel 14
Line
: 6 7 = 0.8571428571…
D
6 7
[ 2nd ] [ SET UP ] [ 2 ] (LineIO)
6 [ ] 7 [ = ]
0 . 8 5 7 1 4 2 8 5 7 1
D FIX
6 7
[ 2nd ] [ SET UP ] [ 6 ] [ 4 ]
(Fix 4)
0 . 8 5 7 1
D FIX
6 7
[ 2nd ] [ SET UP ] [ 6 ] [ 2 ]
(Fix 2)
0.8 6
D SCI
6 7
[ 2nd ] [ SET UP ] [ 7 ] [ 5 ]
(Sci 5)
8. 5 7 1 4 x 1 0
–1
D
6 7
[ 2nd ] [ SET UP ] [ 8 ] [ 2 ]
(Norm 2)
0 . 8 5 7 1 4 2 8 5 7 1
D
6 7
[ ENG ]
8 5 7 . 1 4 2 8 5 7 1 x 1 0
–3
D
6 7
[ 2nd ] [ ENG ] [ 2nd ] [ ENG ]
0.0 0 0 8 5 7 1 4 2 x 1 0
3
D
6 7
[ F D ]
6 7
Beispiel 15
Math
: 123 + 456 = 579 789 – 579 = 210
Math D
1 2 3 + 4 5 6
[ 2nd ] [ SET UP ] [ 1 ] (MthIO)
123 [ + ] 456 [ = ]
5 7 9
Math D
7 8 9 – A n s
789 [ – ] [ ANS ] [ = ]
2 1 0
Beispiel 16
Math
: ln 7 + log 100 = 3.945910149
Math D
l n
(
7) + l o g
(
1 0 0
[ ln ] 7 [ ) ] [ + ] [ log ] 100 [ = ]
3
.
9 4 5 9 1 0 1 4 9
Beispiel 17
Math
: 10
2
+ e
–5
= 100.0067379
Math D
10
2
+ e
5
[ 2nd ] [ 10
X
] 2 [ ] [ + ] [ 2nd ]
[ e
X
] [ (–) ] 5 [ = ]
1 0 0 . 0 0 6 7 3 7 9
Beispiel 18
Line
:
21
470
21
8
22
7
5
14
3
2
7 ==+
D
7 2 3 + 1 4 5 7
[ 2nd ] [ SET UP ] [ 2 ] ( LineIO )
7 [
d
/
e
] 2 [ d/
e
] 3 [ + ] 14 [ d/
e
]
5 [ d/
e
] 7 [ = ]
4 7 0 2 1
Beispiel 19
Line
:
5.4
2
1
4
2
9
4
2
4 ===
D
4 2 4
4 [
d
/
e
] 2 [
d
/
e
] 4 [ = ]
9
2
D
4 2 4
[ 2nd ] [ A
b
/
c
d
/
e ]
4 1 2
D
4 2 4
[ F D ]
4 . 5
D
4 2 4
[ F D ]
9 2
Beispiel 20
Line
:
55.1275.3
5
4
8 =+
D
8 4 5 + 3 . 7 5
8 [
d
/
e
] 4 [
d
/
e
] 5 [ + ] 3.75
[ = ]
1 2 .5 5
Beispiel 21
Line
:
9
31
27
93
9
1
1
27
9
2 ==+
(F=3)
S i m p l i f y ?
[ 2nd ] [ SET UP ] [
] [ 4 ] (SIMP)
1 : Au t o 2 : Manual
D
2 9 2 7 + 1 1 9
[ 2 ](Manual) 2 [
d
/
e
] 9 [
d
/
e
] 27 [ + ]
1 [
d
/
e
] 1 [
d
/
e
] 9 [ = ]
9 3
2 7
D
9 3 2 7
S i m p
F = 3
[ 2nd ] [ SIMP ] [=]
3 1 9
F r a c t i o
n
i r r e d u
c
[ 2nd ] [ SIMP ] [=]
D
3 1 9
S i m p
After 2 second
3 1 9
Beispiel 22
Line
:
163
64
326
128
=
(F=2)
D
Non
si mp li f i ab le
[ A C ] C a n c e l
128 [
d
/
e
] 326 [ 2nd] [ SIMP ] 9 [ = ]
[ ] [
] G o t o
D
1 2 8 3 2 6
S i m p
F = 2
[ ] [ DEL ] [ = ]
6 4 1 6 3
Beispiel 23
Line
: 90 deg. = 1.57079632679 rad. = 100 grad.
. . . . . . . . . . . .
3 D e g 4 R a d
[ 2nd ] [ SET UP ]
5 G r a . . . . . .
1
°
2 r
[ 4 ] ( Rad ) 90 [ 2nd ] [ DRG ]
3 g
R
9 0
O
[ 1 ] (
°
) [ = ]
1 . 5 7 0 7 9 6 3 2 7
G
9 0
O
[ 2nd ] [ SET UP ] [ 5 ] ( Gra ) [ = ]
1 0 0
Beispiel 24
Line
: 12.755 = 12 45
l
18
l l
D
1 2 . 7 5 5
[ 2nd ] [ SET UP ] [ 3 ] ( Deg )
12.755 [ = ]
1 2 . 7 5 5
D
1 2 . 7 5 5
[ DMS ]
1 2 4 5
l
1 8
l l
Beispiel 25
Line
: 2 45
l
10.5
l l
+ 25
l
30
l l
= 3.17791666667
D
2
4 5 1 0. 5 + 0 2 5
2 [ DMS ] 45 [ DMS ] 10.5 [ DMS ]
[ + ] 0 [ DMS ] 25 [ DMS ] 30
[ DMS ] [ = ]
3
1 0
l
4 0
.
5
l l
D
2
4 5 1 0. 5 + 0 2 5
[ 2nd ] [ DMS ]
3
. 1 7 7 9 1 6 6 6 7
Beispiel 26
Math
: sin 30 deg.=
2
1
Math D
s i n ( 3 0
[ 2nd ] [ SET UP ] [ 1 ] (MthIO)
[ sin ] 30 [ = ]
2
1
Beispiel 27
Math
: 3 cos (
π
3
2
rad) = –
2
3
Math R
3 c o s ( 2 3 x π
[ 2nd ] [ SET UP ] [ 4 ] (Rad)
3 [ cos ] 2 [ ] 3 [ x ] [ 2nd ] [
π
]
[ = ]
-
2
3
Beispiel 28
Math
: 3 sin
–1
0.5 = 90 deg
Math D
3 s i n
1
( 0 . 5
[ 2nd ] [ SET UP ] [ 3 ] (Deg)
3 [ 2nd ] [ sin
–1
] 0.5 [ = ]
9 0
Beispiel 29
Line
: cosh 1.5 + 2 = 4.352409615
D
c o s h (1 . 5) + 2
[ 2nd ] [ SET UP ] [ 2 ] (LineIO)
[ HYP ] [ 2 ] (cosh) 1.5 [ ) ] [ + ] 2 [ = ]
4 .
3
5 2 4 0 9 6 1 5
Beispiel 30
Line
: sinh
–1
7 = 2.644120761
D
s i n h
1
( 7
[ HYP ] [ 4 ] (sinh
–1
) 7 [ = ]
2 .
6
4 4 1 2 0 7 6 1
Beispiel 31
Line
: If x = 5, y = 30, what are r, ? Ans : r = 30.41381265,
= 80.53767779
o
D
P o l ( 5 , 3 0
r = 3 0 . 4 1 3 8 1 2 6 5
[ 2nd ] [ SET UP ] [ 2 ] (LineIO)
[ 2nd ] [ R
P ] 5 [ 2nd ] [ ] 30 [ = ]
θ
= 8 0
.
5 3 7 6 7 7 7 9
Beispiel 32
Line
: If r = 25, = 56
o
what are x , y ? Ans : x = 13.97982259,
y = 20.72593931
D
R e c ( 2 5 , 5 6
X= 1 3 . 9 7 9 8 2 2 5 9
[ AC ] [ 2nd ] [ P R ] 25 [ 2nd ]
[ ] 56 [ = ]
Y= 2 0 . 7 2 5 9 3 9 3 1
Beispiel 33
Math
:
840
!])47([
!7
=
Math D
7 P 4
[ 2nd ] [ SET UP ] [ 1 ] (MthIO)
7 [ 2nd ] [ nPr ] 4 [ = ]
8 4 0
Beispiel 34
Math
:
53
!])47([!4
!7
=
Math D
7 C 4
7 [ 2nd ] [ nCr ] 4 [ = ]
3 5
Beispiel 35
Math
: 5 ! = 120
Math D
5 !
5 [ 2nd ] [ x ! ] [ = ]
1 2 0
Beispiel 36
Line
: Es wird eine Zufallszahl zwischen 0.000 ~ 0.999 generiert
D
R a n #
[ 2nd ] [ SET UP ] [ 2 ] (LineIO)
[ 2nd ] [ RANDM ] [ = ]
0. 4 4 9
Beispiel 37
Line
: 52 ÷R 6 + 10 = 18
D
5 2 ÷ R 6
Q
= 8
52 [ 2nd ] [ ÷R ] 6 [ = ]
R = 4
D
A n s + 1 0
[ + ] 10 [ = ]
1 8
Beispiel 38
Line
: Berechnung der Ergebnisse für Y = X² + 15 X + 25
wenn X = 7 (Y = 179) und wenn X = 8 (Y = 209)
D
X ?
[ ALPHA ] [ Y ] [ ALPHA ] [ = ]
[ ALPHA ] [ X ] [ x
2
] [ + ] 15[ ALPHA ]
[ X ] [ + ] 25 [ 2nd ][ CALC ]
0
D
Y = X
2
+ 1 5 X + 2 5
7 [ = ]
1 7 9
D
X ?
[ = ]
7
D
Y = X
2
+ 1 5 X + 2 5
8 [ = ]
2 0 9
Beispiel 39
Line
:
8.0
.251
1
=
D
1 . 2 5
1
1.25 [ x
-1
] [ = ]
0
.
8
Beispiel 40
Line
:
139=5+125+21+4+2
3
3
2
D
2
2
+ (
4
+ 2 1 ) +
3
( 1
2 [ x
2
] [ + ] [ ] 4 [ + ] 21 [ ) ] [ + ]
[ 2nd ] [
3
] 125 [ ) ] [ + ] 5
[ x
3
] [ = ]
1 3 9
Beispiel 41
Line
:
16812=625+7
4
5
D
7 ^ ( 5 ) + 4
X
( 6 2 5
7 [ x
y
] 5 [ ) ] [ + ] 4 [ 2nd ] [
X
]
625 [ = ]
1 6 8 1 2
Beispiel 42
Line
:
2.5 – 9.8
=
7.3
D
A b s ( 2
.
5 - 9. 8 )
[ Abs ] 2.5 [ – ] 9.8 [ ) ] [ = ]
7. 3
Beispiel 43
Line
: 9 7 = 1.285714286, RND (9 7) = 1.286
. . . . . . . . . . . .
5 G r a 6 F i x
[ 2nd ] [ SET UP ]
7 S c i 8 N o r m
D FIX
R n d ( 9 ÷ 7
[ 6 ] [ 3 ] (Fix 3)
[ 2nd ] [ RND ] 9 [
] 7 [ = ]
1. 2 8 6
Math D
?
[ 2nd ] [ CLR ] [
1 ] (Clear Setup)
[ = ] [ AC ]
Beispiel 44
Math
: PPCM ( 12, 56 ) = 168
Math D
P P CM ( 1 2 , 5 6
[ 2nd ] [ PPCM ] 12 [ 2nd ] [
] 56
[ = ]
1 6 8
Beispiel 45
Math
: PGCD ( 12 , 56 ) = 4
Math D
P G C D ( 1 2 , 5 6
[ 2nd ] [ PGCD ] 12 [ 2nd ] [
] 56
[ = ]
4
Beispiel 46
Math
: ENT ( 2.53 ) = 2
Math D
E n t ( 2 . 5 3
[ 2nd ] [ ENT ] 2.53 [ = ]
2
Beispiel 47
Math
: ENTEX ( -12.48 ) = -13
Math D
E n t E x ( - 1 2 . 4 8
[ 2nd ] [ ENTEX ] [ (-) ]12.48 [ = ]
- 1 3
Beispiel 48
Math
: Benutzen Sie die Mehrfachaussagefunktion um die
unten aufgeführten Aussagen zu prüfen: ( B = 15 )
=÷
=
12B180
19513 x B
Math D
1 5 B
[ 2nd ] [ SET UP ] [ 1 ] (MthIO)
15 [ 2nd ] [ STO ] [ B ]
1 5
Math D
B x 1 3 1 8 0 ÷ B
?
[ AC ] [ ALPHA ] [ B ] [ x ] 13
[ ALPHA ] [
] 180 [ ] [ ALPHA ]
[ B ]
Math D DISP
B x 1 3
[ = ]
1 9 5
Math D
1 8 0 ÷ B
[ = ]
1 2
Beispiel 49
Geben Sie die Werte für X, Y und die folgenden Daten ein um die
lineare Regression zu berechnen (A+BX), dann finden Sie raus
dass: n= 8, x = 2.875, y = 6.875, xσn = 1.053268722,
yσn-1= 1.125991626, maxX = 4. Σx 2= 75, und A=4 und sctzen
Sie den Wert xˆ = ? für y = -3 und = ? r x = 2
X
1 2 3 4
Y
5 6 7 8
FREQ.
1 2 2 3
F r e q u e n c y ?
[ ON ] [ 2nd ] [ SET UP ] [ ] [ 3 ]
(STAT)
1 : O N 2 : O F F
Math D
[ 1 ] ( ON )
1: 1 - V A R 2 : A + B X
3
: -
+
C
X
2
4
: l
n
X
5
: e
^
X
6
:
A
B
^
X
7
:
A
X
^
B
8
: 1
/
X
[ MODE ] [ 2 ] ( STAT )
STAT D
X Y F R E Q
3
3
7
2
4
4
8
3
5
[ 2 ] (A+BX) 1 [ = ] 2 [ = ] 3 [ = ] 4
[ = ] [ ] [ ] 5 [ = ] 6 [ = ] 7 [ = ] 8
[ = ] [ ] [ ] 1 [ = ] 2 [ = ] 2 [ = ] 3
[ = ]
STAT D
[ AC ]
0
STAT D
n
[ 2nd ] [ STATVAR ] [ 5 ] [ 1 ] [ = ]
8
STAT D
x
[ 2nd ] [ STATVAR ] [ 5 ] [ 2 ] [ = ]
2
.
8 7 5
STAT D
y
[ 2nd ] [ STATVAR ] [ 5 ] [ 5 ] [ = ]
6
.
8 7 5
STAT D
x
σ n
[ 2nd ] [ STATVAR ] [ 5 ] [ 3 ] [ = ]
1. 0 5 3 2 6 8 7 2 2
STAT D
y
σ n -1
[ 2nd ] [ STATVAR ] [ 5 ] [ 7 ] [ = ]
1. 1 2 5 9 9 1 6 2 6
STAT D
m a x X
[ 2nd ] [ STATVAR ] [ 6 ] [ 2 ] [ = ]
4
STAT D
Σ x
2
[ 2nd ] [ STATVAR ] [ 4 ] [ 1 ] [ = ]
7 5
STAT D
A
[ 2nd ] [ STATVAR ] [ 7 ] [ 1 ] [ = ]
4
STAT D
-3
x
ˆ
[ (-) ] [ 3 ] [ 2nd] [ STATVAR ] [ 7 ] [ 4 ]
[ = ]
- 7
STAT D
2
y
ˆ
[ 2 ] [ 2nd ] [ STATVAR ] [ 7 ] [ 5 ] [ = ]
6
Beispiel 50
Math
:
2Y,5X
13Y4X
5Y5X3
==?
=
=+
Math D
1: a n X + b n Y = c n
[ MODE ] [ 3 ] ( EQN)
2: a n X + b n Y + c n Z = d n
{
Math D
a b c
1 0 0 0
2
0 0 0
1 (anX+bnY=cn)
0
Math D
a b c
1 3 5 5
2
1 - 4 1 3
3 [ = ] 5 [ = ] 5 [ = ] 1 [ = ] [ (-) ] 4
[ = ] 13 [ = ]
1 3
Math D
X =
[ = ]
5
Math D
Y =
[ = ]
- 2
Math
:
3Z,2Y,1X
13ZY7X2
2ZY3X5
23Z6Y2X
===?
=+
=+
=++
Math D
1: a n X + b n Y = c n
[ MODE ] [ 3 ] ( EQN)
2: a n X + b n Y + c n Z = d n
Math D
a b c
1 0 0 0
2
0 0 0
3
0 0 0
2 (anX+bnY+cnZ=dn)
0
Math D
b c d
1 2 6 2 3
2
- 3 1 2
3
7 - 1 1 3
1 [ = ] 2 [ = ] 6 [ = ] 23 [ = ] 5 [ = ]
[ (-) ] 3 [ = ] 1 [ = ] 2 [ = ] 2 [ = ] 7
[ = ] [ (-) ] 1 [ = ] 13 [ = ]
1 3
Math D
X =
[ = ]
1
Math D
Y =
[ = ]
2
Math D
Z =
[ = ]
3
Beispiel 52
Math D
f ( X
)
=
[ MODE ] [ 4 ] ( TABLE )
Math D
f ( X
)
= 2 X
2
+ X + 1
2 [ ALPHA ] [ X ] [ X
2
] [ + ] [ ALPHA ]
[ X ] [ + ] 1
Math D
S t a r t ?
[ = ]
1
Math D
E n d ?
5 [ = ]
5
Math D
S t e p ?
20 [ = ]
1
Math D
X F(X)
1
5
5
6
2
8
1 3
7
3 1 1
2
5
4
3 [ = ]
5
Beispiel 53
Math
: 5
2
=
625
> 13
Math D
?
[ MODE ] [ 5 ] ( VERIF )
T R U E / F A L S E
1 : = 2 : ?
3 : > 4 : <
5 [ X
2
] [ 2nd ] [ VERFIY ]
5 : ? 6 : ?
Math D
5
2
= ?
1 ( = )
Math D
5
2
=
625
> 1 3
[
?
] 625 [ ? ] [ 2nd ]
[ VERFIY ] 3 ( > ) 13 [ = ]
T R U E
Beispiel 54
Line
: Geben Sie fr 1 den W ert = 2 .54 cm e in , S ie e rha lten be i
Eingabe von 10 den Wert = 25.4 cm
1 : a / b = X / d
[ 2nd ] [ SET UP ] 2 (LineIO)
[ MODE ] [ 6 ] ( PROP )
2 : a / b = c / X
D
a b c
[ 0 0 0 ]
a / b = c / X
2 (a/b=c/X)
0
D
a b c
[ 1 2 .5 4 1 0 ]
a / b = c / X
1 [ = ] 2.54 [ = ] 10 [ = ]
1 0
D
X =
[ = ]
2 5 . 4
{
Berechnung von Verhältnissen
(Anmerkung) : Statistische Daten und Resultate werden
beibehalten, wenn der Rechner ausgeschaltet
wird, jedoch werden sie durch eine Änderung des
Kalkulationstyps, der FREQ Einstellung oder
Datenlöschung mittels Del-A Befehl gelöscht.
Funktionstabelle
Verwenden Sie den TABLE-Modus ( [ MODE ] 3 ( TABLE ) ) zur
Erzeugung einer Funktionstabelle.
Verwenden Sie den TABLE-Modus, um eine definierte Funktion in
Tabellenform auszudrücken. Erstellung einer Funktionstabelle:
(Siehe Beispiel 42.)
1. [ MODE ] [ 3 ] (TABLE) drücken.
2. Eine Funktion eingeben und [ = ] drücken.
3. Geben Sie den Start-, End- und Stufenwert von X ein, und
drücken Sie [ = ].
4. Nach Schritt 3 wird eine Tabelle von Werten erzeugt, die jede
Eingabe X sowie die entsrpechende Ausgabe f(X) entlt.
(Anmerkung) : 1. Bei dieser Funktion ist nur die Variable X
verfügbar.
2. Der Start-, End- und Stufenwert, den Sie
spezifizieren, sollte eine Tabelle erzeugen, die ein
Maximum von 30 X-Werten nicht überschreitet.
Überprüfen von Funktionen
Benutzen Sie den VERIF ( [ MODE ] 5 ( VERIF ) ) Modus um 2 Werte
zu vergleichen. (siehe Beispiel 53)
Mit den folgenden Anweisungen kommen Sie in den Prüfungsmodus
VERIFY.
1) Gleichheiten oder Ungleichheiten, eines relationalen Operators.
4 = √16; 4 ≠ 3; π > 3; 1+2 ≤ 5; (3x6) < (2+6)x2; usw.
2) Gleichheiten oder Ungleichheiten, mehrer relationaler Operatoren.
1 ≤ 1 < 1+1; 3 < π < 4; 22 = 2+2 = 4; 2+2 = 4 < 6; 2+3 = 5 ≠
2+5 = 8; usw.
Durch Drücken der [2nd][VERIFY] Tasten, erhalten Sie ein Menü mit
verschiedenen Funktionen. Drücken Sie die Zifferntaste, die der
gewünschten Funktion zur Eingabe entspricht.
KEY IN DISPLAY
Drücken Sie PROP ( [ MODE ] 6 ( PROP ) ) und starten Sie hiermit das
Menü für die Berechnung von Verhältnissen.
Mit dem PROP Modus können Sie die Unbekannte X = lösen.
a:b=X:d (or a:b=c:X) solange die Werte a, b, c und d bekannt sind.
(siehe Beispiel 54)
Um den Wert X zu errechnen
1. Drücken Sie [ MODE ] [6] [1] oder [ MODE ] [6] [2].
2. Geben Sie die Werte des gewünschten Wertes ein (a, b, c, d) und
drücken Sie [ = ].
Um alle Koeffizienten zu löschen drücken Sie [ AC ].
3. Wenn alle Koeffizienten eingegeben worden sind drücken Sie [ = ]
um den Wert von X zu erhalten.
4. Drücken Sie [ = ] oder [AC] und Sie springen zurück zum
Koeffizienten Eingabedisplay.
(Heinweis) : 1. Nachdem Sie alle Daten eingegeben haben drücken
Sie [ = ]. Die Zellen werden mit einer Anzahl von bis zu 6 Zeichen
angezeigt.
2. Sie können nicht die Werte der technischen Notation ändern,
solange eine Lösungsgleichung angezeigt wird.
3. Ein Math ERROR erscheint, wenn Sie die 0 als Koeffizienten
eingegeben haben.
2


Need help? Post your question in this forum.

Forumrules


Report abuse

Libble takes abuse of its services very seriously. We're committed to dealing with such abuse according to the laws in your country of residence. When you submit a report, we'll investigate it and take the appropriate action. We'll get back to you only if we require additional details or have more information to share.

Product:

For example, Anti-Semitic content, racist content, or material that could result in a violent physical act.

For example, a credit card number, a personal identification number, or an unlisted home address. Note that email addresses and full names are not considered private information.

Forumrules

To achieve meaningful questions, we apply the following rules:

Register

Register getting emails for Citizen SR-270X College at:


You will receive an email to register for one or both of the options.


Get your user manual by e-mail

Enter your email address to receive the manual of Citizen SR-270X College in the language / languages: German as an attachment in your email.

The manual is 1,04 mb in size.

 

You will receive the manual in your email within minutes. If you have not received an email, then probably have entered the wrong email address or your mailbox is too full. In addition, it may be that your ISP may have a maximum size for emails to receive.

Others manual(s) of Citizen SR-270X College

Citizen SR-270X College User Manual - English - 41 pages

Citizen SR-270X College User Manual - Dutch - 129 pages

Citizen SR-270X College User Manual - French - 64 pages

Citizen SR-270X College User Manual - Italian - 129 pages

Citizen SR-270X College User Manual - Portuguese - 64 pages

Citizen SR-270X College User Manual - Spanish - 129 pages


The manual is sent by email. Check your email

If you have not received an email with the manual within fifteen minutes, it may be that you have a entered a wrong email address or that your ISP has set a maximum size to receive email that is smaller than the size of the manual.

The email address you have provided is not correct.

Please check the email address and correct it.

Your question is posted on this page

Would you like to receive an email when new answers and questions are posted? Please enter your email address.



Info